Back to Search Start Over

Molecular and physiological mechanisms of tea (Camellia sinensis (L.) O. Kuntze) leaf and root in response to nitrogen deficiency

Authors :
Zheng-He Lin
Chang-Song Chen
Shui-Qing Zhao
Yuan Liu
Qiu-Sheng Zhong
Qi-Chun Ruan
Zhi-Hui Chen
Xiao-Mei You
Rui-Yang Shan
Xin-Lei Li
Ya-Zhen Zhang
Source :
BMC Genomics, Vol 24, Iss 1, Pp 1-16 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar “Chunlv2” [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. Results N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P

Details

Language :
English
ISSN :
14712164
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.119cb4c8ce474ba883ff1f0ac68bbf
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-023-09112-y