Back to Search Start Over

Distribution and impacts on the geological environment of antiviral drugs in major waters of Wuhan, China

Authors :
Jun He
Tong Feng
Liang Tao
Yue-e Peng
Lei Tong
Xin-wen Zhao
Xin Shao
Lin-ya Xu
Yan-lin Yang
Yong-bo Zhao
Source :
China Geology, Vol 5, Iss 3, Pp 402-410 (2022)
Publication Year :
2022
Publisher :
KeAi Communications Co., Ltd., 2022.

Abstract

This study investigated water samples collected from the surface water and groundwater in Wuhan City, Hubei Province, China in different stages of the outbreak of the coronavirus disease 2019 (hereinafter referred to as COVID-19) in the city, aiming to determine the distribution characteristics of antiviral drugs in the city’s waters. The results are as follows. The main hydrochemical type of surface water and groundwater in Wuhan was Ca-HCO3. The major chemical components in the groundwater had higher concentrations and spatial variability than those in the surface water. Two antiviral drugs and two glucocorticoids were detected in the surface water, groundwater, and sewage during the COVID-19 outbreak. Among them, chloroquine phosphate and cortisone had higher detection rates of 32.26% and 25.80%, respectively in all samples. The concentrations of residual drugs in East Lake were higher than those in other waters. The main drug detected in the waters in the later stage of the COVID-19 outbreak in Wuhan was chloroquine phosphate, whose detection rates in the surface water and the groundwater were 53.85% and 28.57%, respectively. Moreover, the detection rate and concentration of chloroquine phosphate were higher in East Lake than in Huangjia Lake. The groundwater containing chloroquine phosphate was mainly distributed along the river areas where the groundwater was highly vulnerable. The residual drugs in the surface water and the groundwater had lower concentrations in the late stage of the COVID-19 outbreak than in the middle of the outbreak, and they have not yet caused any negative impacts on the ecological environment.©2022 China Geology Editorial Office.

Details

Language :
English
ISSN :
20965192
Volume :
5
Issue :
3
Database :
Directory of Open Access Journals
Journal :
China Geology
Publication Type :
Academic Journal
Accession number :
edsdoj.11bbf08bbd2f42179e4e6c0e4778fae3
Document Type :
article
Full Text :
https://doi.org/10.31035/cg2022047