Back to Search Start Over

Value of laboratory results in addition to vital signs in a machine learning algorithm to predict in-hospital cardiac arrest: A single-center retrospective cohort study.

Authors :
Ryo Ueno
Liyuan Xu
Wataru Uegami
Hiroki Matsui
Jun Okui
Hiroshi Hayashi
Toru Miyajima
Yoshiro Hayashi
David Pilcher
Daryl Jones
Source :
PLoS ONE, Vol 15, Iss 7, p e0235835 (2020)
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

BackgroundAlthough machine learning-based prediction models for in-hospital cardiac arrest (IHCA) have been widely investigated, it is unknown whether a model based on vital signs alone (Vitals-Only model) can perform similarly to a model that considers both vital signs and laboratory results (Vitals+Labs model).MethodsAll adult patients hospitalized in a tertiary care hospital in Japan between October 2011 and October 2018 were included in this study. Random forest models with/without laboratory results (Vitals+Labs model and Vitals-Only model, respectively) were trained and tested using chronologically divided datasets. Both models use patient demographics and eight-hourly vital signs collected within the previous 48 hours. The primary and secondary outcomes were the occurrence of IHCA in the next 8 and 24 hours, respectively. The area under the receiver operating characteristic curve (AUC) was used as a comparative measure. Sensitivity analyses were performed under multiple statistical assumptions.ResultsOf 141,111 admitted patients (training data: 83,064, test data: 58,047), 338 had an IHCA (training data: 217, test data: 121) during the study period. The Vitals-Only model and Vitals+Labs model performed comparably when predicting IHCA within the next 8 hours (Vitals-Only model vs Vitals+Labs model, AUC = 0.862 [95% confidence interval (CI): 0.855-0.868] vs 0.872 [95% CI: 0.867-0.878]) and 24 hours (Vitals-Only model vs Vitals+Labs model, AUC = 0.830 [95% CI: 0.825-0.835] vs 0.837 [95% CI: 0.830-0.844]). Both models performed similarly well on medical, surgical, and ward patient data, but did not perform well for intensive care unit patients.ConclusionsIn this single-center study, the machine learning model predicted IHCAs with good discrimination. The addition of laboratory values to vital signs did not significantly improve its overall performance.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
7
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.11edd5cf72e74d58b9488a95fdeb6345
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0235835