Back to Search Start Over

Phyllosphere microbial associations improve plant reproductive success

Authors :
Elijah C. Mehlferber
Reena Debray
Asa E. Conover
Julia K. Sherman
Griffin Kaulbach
Robert Reed
Kent F. McCue
Jon E. Ferrel
Rajnish Khanna
Britt Koskella
Source :
Frontiers in Plant Science, Vol 14 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

The above-ground (phyllosphere) plant microbiome is increasingly recognized as an important component of plant health. We hypothesized that phyllosphere bacterial recruitment may be disrupted in a greenhouse setting, and that adding a bacterial amendment would therefore benefit the health and growth of host plants. Using a newly developed synthetic phyllosphere bacterial microbiome for tomato (Solanum lycopersicum), we tested this hypothesis across multiple trials by manipulating microbial inoculation of leaves and measuring subsequent plant growth and reproductive success, comparing results from plants grown in both greenhouse and field settings. We confirmed that greenhouse-grown plants have a relatively depauperate phyllosphere bacterial microbiome, which both makes them an ideal system for testing the impact of phyllosphere communities on plant health and important targets for microbial amendments as we move towards increased agricultural sustainability. We find that the addition of the synthetic microbial community early in greenhouse growth leads to an increase in fruit production in this setting, implicating the phyllosphere microbiome as a key component of plant fitness and emphasizing the role that these bacterial microbiomes likely play in the ecology and evolution of plant communities.

Details

Language :
English
ISSN :
1664462X
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.1268f84e0bb46bfaf9aec2bbd08bde1
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2023.1273330