Back to Search Start Over

Listeria monocytogenes from Food Products and Food Associated Environments: Antimicrobial Resistance, Genetic Clustering and Biofilm Insights

Authors :
Adriana Silva
Vanessa Silva
João Paulo Gomes
Anabela Coelho
Rita Batista
Cristina Saraiva
Alexandra Esteves
Ângela Martins
Diogo Contente
Lara Diaz-Formoso
Luis M. Cintas
Gilberto Igrejas
Vítor Borges
Patrícia Poeta
Source :
Antibiotics, Vol 13, Iss 5, p 447 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Listeria monocytogenes, a foodborne pathogen, exhibits high adaptability to adverse environmental conditions and is common in the food industry, especially in ready-to-eat foods. L. monocytogenes strains pose food safety challenges due to their ability to form biofilms, increased resistance to disinfectants, and long-term persistence in the environment. The aim of this study was to evaluate the presence and genetic diversity of L. monocytogenes in food and related environmental products collected from 2014 to 2022 and assess antibiotic susceptibility and biofilm formation abilities. L. monocytogenes was identified in 13 out of the 227 (6%) of samples, 7 from food products (meat preparation, cheeses, and raw milk) and 6 from food-processing environments (slaughterhouse-floor and catering establishments). All isolates exhibited high biofilm-forming capacity and antibiotic susceptibility testing showed resistance to several classes of antibiotics, especially trimethoprim-sulfamethoxazole and erythromycin. Genotyping and core-genome clustering identified eight sequence types and a cluster of three very closely related ST3 isolates (all from food), suggesting a common contamination source. Whole-genome sequencing (WGS) analysis revealed resistance genes conferring resistance to fosfomycin (fosX), lincosamides (lin), fluoroquinolones (norB), and tetracycline (tetM). In addition, the qacJ gene was also detected, conferring resistance to disinfecting agents and antiseptics. Virulence gene profiling revealed the presence of 92 associated genes associated with pathogenicity, adherence, and persistence. These findings underscore the presence of L. monocytogenes strains in food products and food-associated environments, demonstrating a high virulence of these strains associated with resistance genes to antibiotics, but also to disinfectants and antiseptics. Moreover, they emphasize the need for continuous surveillance, effective risk assessment, and rigorous control measures to minimize the public health risks associated to severe infections, particularly listeriosis outbreaks. A better understanding of the complex dynamics of pathogens in food products and their associated environments can help improve overall food safety and develop more effective strategies to prevent severe health consequences and economic losses.

Details

Language :
English
ISSN :
20796382
Volume :
13
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Antibiotics
Publication Type :
Academic Journal
Accession number :
edsdoj.127800a6568c43e6a9c790e9e53750b5
Document Type :
article
Full Text :
https://doi.org/10.3390/antibiotics13050447