Back to Search Start Over

Chemical characterization of aerosols at the summit of Mountain Tai in Central East China

Authors :
C. Deng
G. Zhuang
K. Huang
J. Li
R. Zhang
Q. Wang
T. Liu
Y. Sun
Z. Guo
J. S. Fu
Z. Wang
Source :
Atmospheric Chemistry and Physics, Vol 11, Iss 14, Pp 7319-7332 (2011)
Publication Year :
2011
Publisher :
Copernicus Publications, 2011.

Abstract

PM2.5 and TSP samples were collected at the summit of Mountain Tai (MT) (1534 m a.s.l.) in spring 2006/2007 and summer 2006 to investigate the characteristics of aerosols over central eastern China. For comparison, aerosol samples were also collected at Tazhong, Urumqi, and Tianchi in Xinjiang in northwestern China, Duolun and Yulin in northern China, and two urban sites in the megacities, Beijing and Shanghai, in 2007. Daily mass concentrations of TSP and PM2.5 ranged from 39.6–287.6 μg m−3 and 17.2–235.7 μg m−3 respectively at the summit of MT. Averaged concentrations of PM2.5 showed a pronounced seasonal variation with higher concentration in summer than spring. 17 water-soluble ions (SO42−, NO3−, Cl−, F−, PO43−, NO2−, CH3COO−, CH2C2O42−, C2H4C2O42−, HCOO−, MSA, C2O42−, NH4+, Ca2+, K+, Mg2+, Na+), and 19 elements of all samples were measured. SO42−, NO3−, and NH4+ were the major water-soluble species in PM2.5, accounting for 61.50 % and 72.65 % of the total measured ions in spring and summer, respectively. The average ratio of PM2.5/TSP was 0.37(2006) and 0.49(2007) in spring, while up to 0.91 in summer, suggesting that aerosol particles were primarily comprised of fine particles in summer and of considerable coarse particles in spring. Crustal elements (e.g., Ca, Mg, Al, Fe, etc.) showed higher concentration in spring than summer, while most of the pollution species (SO42−, NO3−, K+, NO2−, NH4+, Cl−, organic acids, Pb, Zn, Cd, and Cr) from local/regional anthropogenic emissions or secondary formation presented higher concentration in summer. The ratio of Ca/Al suggested the impact of Asian dust from the western deserts on the air quality in this region. The high concentration of K+ in PM2.5 (4.41 μg m−3) and its good correlation with black carbon (r = 0.90) and oxalic acid (r = 0.87) suggested the severe pollution from biomass burning, which was proved to be a main source of fine particles over central eastern China in summer. The contribution of biomass burning to the fine particle at MT accounted for 7.56 % in spring and 36.71 % in summer, and even reached to 81.58 % on a day. As and Pb were two of the most enriched elements. The long-range transport of aerosols spread the heavy pollution from coal-mining/coal-ash to everywhere over China. Anthropogenic air-pollution was evidently rather severe at MT, though it has been declared by UNESCO to be a World Heritage site.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
11
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.12b3179655764c0e856f150aa8c2c14a
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-11-7319-2011