Back to Search Start Over

Validation of NASA SMAP Satellite Soil Moisture Products over the Desert of Kuwait

Authors :
Hala AlJassar
Marouane Temimi
Mohamed Abdelkader
Peter Petrov
Panagiotis Kokkalis
Hussain AlSarraf
Nair Roshni
Hamad Al Hendi
Source :
Remote Sensing, Vol 14, Iss 14, p 3328 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The goal of this study is to validate and analyze NASA’s Soil Moisture Active Passive (SMAP) products over the desert of Kuwait. The study period was between April 2015 and April 2020. The study domain includes a mission candidate calibration/validation (Cal/Val) site that comprises six permanent soil moisture stations used to verify SMAP estimates. In addition, intensive field campaigns were conducted within and around the candidate Cal/Val site during the study period to collect additional thermogravimetric samples. The mean difference (MD), root mean squared difference (RMSD), unbiased root mean square difference (ubRMSD), and correlation coefficient (R) were computed to assess the agreement between SMAP SM products and in situ observations. The comparison of the six ground station sensors’ observations with the thermogravimetric samples led to an absolute mean bias (AMB) of 0.034 m3 m−3, which was then used to calibrate the sensors and bias-correct their measurements. The temporal consistency of the readings from the test site and calibrated sensors was assessed using the mean relative difference (MRD) and its standard deviation of relative difference (SDRD). Using a sampling density analysis, it was determined that a minimum of four ground stations would be required to validate the test site. Furthermore, the consistency between SMAP satellite soil moisture data and those derived from the Soil Moisture and Ocean Salinity (SMOS) satellite operated by the European Space Agency, and their agreement with in situ samples, was analyzed. The comparison of SMAP and SMOS soil moisture data with in situ observations showed that both satellites successfully captured the spatial and temporal distribution of soil moisture. For SMAP and SMOS, the lowest ubRMSE statistics were 0.043 m3 m−3 and 0.045 m3 m−3, respectively, which are slightly higher than the mission target of 0.04 m3 m−3.

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
14
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.13e05e1c97e047b6b0edab8888bdc605
Document Type :
article
Full Text :
https://doi.org/10.3390/rs14143328