Back to Search Start Over

Microbiopsy engineered for minimally invasive and suture-free sub-millimetre skin sampling [v2; ref status: indexed, http://f1000r.es/1h7]

Authors :
Lynlee L Lin
Tarl W Prow
Anthony P Raphael
Robert L Harrold III
Clare A Primiero
Alexander B Ansaldo
H Peter Soyer
Source :
F1000Research, Vol 2 (2013)
Publication Year :
2013
Publisher :
F1000 Research Ltd, 2013.

Abstract

We describe the development of a sub-millimetre skin punch biopsy device for minimally invasive and suture-free skin sampling for molecular diagnosis and research. Conventional skin punch biopsies range from 2-4 mm in diameter. Local anaesthesia is required and sutures are usually used to close the wound. Our microbiopsy is 0.50 mm wide and 0.20 mm thick. The microbiopsy device is fabricated from three stacked medical grade stainless steel plates tapered to a point and contains a chamber within the centre plate to collect the skin sample. We observed that the application of this device resulted in a 0.21 ± 0.04 mm wide puncture site in volunteer skin using reflectance confocal microscopy. Histological sections from microbiopsied skin revealed 0.22 ± 0.12 mm wide and 0.26 ± 0.09 mm deep puncture sites. Longitudinal observation in microbiopsied volunteers showed that the wound closed within 1 day and was not visible after 7 days. Reflectance confocal microscope images from these same sites showed the formation of a tiny crust that resolved by 3 weeks and was completely undetectable by the naked eye. The design parameters of the device were optimised for molecular analysis using sampled DNA mass as the primary end point in volunteer studies. Finally, total RNA was characterized. The optimised device extracted 5.9 ± 3.4 ng DNA and 9.0 ± 10.1 ng RNA. We foresee that minimally invasive molecular sampling will play an increasingly significant role in diagnostic dermatology and skin research.

Details

Language :
English
ISSN :
20461402
Volume :
2
Database :
Directory of Open Access Journals
Journal :
F1000Research
Publication Type :
Academic Journal
Accession number :
edsdoj.14a56d6956a14ea19fae207c45996683
Document Type :
article
Full Text :
https://doi.org/10.12688/f1000research.2-120.v2