Back to Search Start Over

Diyabet Hastalığının Erken Aşamada Tahmin Edilmesi İçin Makine Öğrenme Algoritmalarının Performanslarının Karşılaştırılması

Authors :
Abdulkadir Karacı
Kemal Akyol
Source :
Düzce Üniversitesi Bilim ve Teknoloji Dergisi, Vol 9, Iss 6, Pp 123-134 (2021)
Publication Year :
2021
Publisher :
Düzce University, 2021.

Abstract

Şeker hastalığı, kan şekerinde anormalliklere neden olan zararlı hastalıklardan biridir. Bu hastalığın erken teşhisi insan vücudunda oluşabilecek organ bozulmalarını engeller. Yapay zekâ tabanlı çalışmalar medikal alanda etkin bir şekilde gerçekleştirilmektedir. Makine öğrenmesine dayalı bilgisayar destekli uzman sistemler bu hastalığın erken teşhisi için oldukça faydalıdır. Bu çalışmadaki şeker hastalığı problemi, klasik bir denetimli ikili sınıflandırma problemidir. Bu verisetinde 16 öznitelik bulunmakta olup, 200'ü negatif örnek ve 320'si pozitif örnek olmak üzere toplam 520 örnek içermektedir. Önişlemden geçirilen veriseti üzerinde Rastgele Orman, Gradyan Arttırma, K-En Yakın Komşu, Derin Sinir Ağları ve son olarak da Oylama topluluk sınıflandırıcısı kullanılarak inşa edilen modellerin performansları dışarıda tutma ve 5-kat çapraz doğrulama senaryoları çerçevesinde analiz edilmiştir. Her iki senaryoda da, Oylama topluluğu sınıflandırıcısı, deneylerde en iyi performansı sundu. Buna göre, Oylama topluluğu sınıflandırıcısı, tutma tekniğiyle yapılan deneylerde %100'lük bir sınıflandırma doğruluğu ve 5 kat çapraz doğrulamalı deneylerde ortalama %97,31'lik bir sınıflandırma doğruluğu sundu. Sonuç olarak, Oylama topluluğu sınıflandırıcısı kullanılarak diyabeti gerçek zamanlı olarak erken teşhis eden bir uzman sistem tasarlanabilir.

Details

Language :
English, Turkish
ISSN :
21482446
Volume :
9
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Düzce Üniversitesi Bilim ve Teknoloji Dergisi
Publication Type :
Academic Journal
Accession number :
edsdoj.14eedcc9b46c4738a6241af9529dac91
Document Type :
article
Full Text :
https://doi.org/10.29130/dubited.1014508