Back to Search Start Over

Semi-Automatic Annotation of 3D Radar and Camera for Smart Infrastructure-Based Perception

Authors :
Shiva Agrawal
Savankumar Bhanderi
Gordon Elger
Source :
IEEE Access, Vol 12, Pp 34325-34341 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

Environment perception using camera, radar, and/or lidar sensors has significantly improved in the last few years because of deep learning-based methods. However, a large group of these methods fall into the category of supervised learning, which requires a considerable amount of annotated data. Due to uncertainties in multi-sensor data, automating the data labeling process is extremely challenging; hence, it is performed manually to a large extent. Even though full automation of such a process is difficult, semi-automation can be a significant step to ease this process. However, the available work in this regard is still very limited; hence, in this paper, a novel semi-automatic annotation methodology is developed for labeling RGB camera images and 3D automotive radar point cloud data using a smart infrastructure-based sensor setup. This paper also describes a new method for 3D radar background subtraction to remove clutter and a new object category, GROUP, for radar-based object detection for closely located vulnerable road users. To validate the work, a dataset named INFRA-3DRC is created using this methodology, where 75 % of the labels are automatically generated. In addition, a radar cluster classifier and an image classifier are developed, trained, and tested on this dataset, achieving accuracy of 98.26% and 94.86%, respectively. The dataset and Python scripts are available at https://fraunhoferivi.github.io/INFRA-3DRC-Dataset/.

Details

Language :
English
ISSN :
21693536
Volume :
12
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.14fec996ee4e43fa9eaf822dae092c62
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2024.3373310