Back to Search Start Over

Rationally Engineering pH Adaptation of Acid‐Induced Arginine Decarboxylase from Escherichia coli to Alkaline Environments to Efficiently Biosynthesize Putrescine

Authors :
Li Wang
Bo Ding
Xiangyang Hu
Guohui Li
Yu Deng
Source :
Advanced Science, Vol 11, Iss 23, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Acid‐induced arginine decarboxylase AdiA is a typical homo‐oligomeric protein biosynthesizing alkaline nylon monomer putrescine. However, upon loss of the AdiA decamer oligomeric state at neutral and alkaline conditions the activity also diminishes, obstructing the whole‐cell biosynthesis of alkaline putrescine. Here, a structure cohesion strategy is proposed to change the pH adaptation of AdiA to alkaline environments based on the rational engineering of meridional and latitudinal oligomerization interfaces. After integrating substitutions of E467K at the latitudinal interface and H736E at the meridional channel interface, the structural stability of AdiA decamer and its substrate transport efficiency at neutral and alkaline conditions are improved. Finally, E467K_H736E is well adapted to neutral and alkaline environments (pH 7.0–9.0), and its enzymatic activity is 35‐fold higher than that of wild AdiA at pH 8.0. Using E467K_H736E in the putrescine synthesis pathway, the titer of putrescine is up to 128.9 g·L−1 with a conversion of 0.94 mol·mol−1 in whole‐cell catalysis. Additionally, the neutral pH adaptation of lysine decarboxylase, with a decamer structure similar to AdiA, is also improved using this cohesion strategy, providing an option for pH‐adaptation engineering of other oligomeric decarboxylases.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.15fe3c041ad14876939d1b0dcd40c60a
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202307779