Back to Search Start Over

Host plants influence the composition of the gut bacteria in Henosepilachna vigintioctopunctata.

Authors :
Jing Lü
Wei Guo
Shimin Chen
Mujuan Guo
Baoli Qiu
Chunxiao Yang
Tengxiang Lian
Huipeng Pan
Source :
PLoS ONE, Vol 14, Iss 10, p e0224213 (2019)
Publication Year :
2019
Publisher :
Public Library of Science (PLoS), 2019.

Abstract

The gut bacteria of insects positively influence the physiology of their host, however, the dynamics of this complicated ecosystem are not fully clear. To improve our understanding, we characterized the gut prokaryotic of Henosepilachna vigintioctopunctata that fed on two host plants, Solanum melongena (referred to as QZ hereafter) and Solanum nigrum (referred to as LK hereafter), by sequencing the V3-V4 hypervariable region of the 16S rRNA gene using the Illumina MiSeq system. The results revealed that the gut bacterial composition varied between specimens that fed on different host plants. The unweighted pair group method with arithmetic mean analyses and principal coordinate analysis showed that the bacterial communities of the LK and QZ groups were distinct. Four phyla (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) were present in all H. vigintioctopunctata gut samples. It is noteworthy that bacteria of the phylum Cyanobacteria were only found in the LK group, with a low relative abundance. Proteobacteria and Enterobacteriaceae were the predominant phylum and family, respectively, in both the LK and QZ groups. Linear discriminant analysis effect size (LEfSe) analyses showed that the QZ group enriched the Bacilli class and Lactococcus genus; while the LK group enriched the Alphaproteobacteria class and Ochrobactrum genus. PICRUSt analysis showed that genes predicted to be involved in xenobiotic biodegradation and metabolism, metabolism of other amino acids, signaling molecules, and interaction were significantly higher in the QZ group. Genes predicted to be involved in the metabolism of cofactors and vitamins were significantly higher in the LK group. Furthermore, the complexity of the network structure and the modularity were higher in the LK group than in the QZ group. This is the first study to characterize the gut bacteria of H. vigintioctopunctat, our results demonstrate that the two host plants tested had a considerable impact on bacterial composition in the gut of H. vigintioctopunctata and that the bacterial communities were dominated by relatively few taxa.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
10
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.163dab6bc86a4f92ab60e4e5fd5a24e5
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0224213