Back to Search Start Over

Normalized solutions for the mixed dispersion nonlinear Schrödinger equations with four types of potentials and mass subcritical growth

Authors :
Cheng Ma
Source :
Electronic Research Archive, Vol 31, Iss 7, Pp 3759-3775 (2023)
Publication Year :
2023
Publisher :
AIMS Press, 2023.

Abstract

This paper is devoted to considering the attainability of minimizers of the $ L^2 $-constraint variational problem $ m_{\gamma, a} = \inf \, \{J_{\gamma}(u):u\in H^2(\mathbb{R}^{N}), \int_{\mathbb{R}^{N}} \vert u\vert^2 dx = a^2 \} {, } $ where $ J_{\gamma}(u) = \frac{\gamma}{2}\int_{\mathbb{R}^{N}} \vert\Delta u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} \vert\nabla u\vert^2 dx+\frac{1}{2}\int_{\mathbb{R}^{N}} V(x)\vert u\vert^2 dx-\frac{1}{2\sigma+2}\int_{\mathbb{R}^{N}} \vert u\vert^{2\sigma+2} dx, $ $ \gamma > 0 $, $ a > 0 $, $ \sigma\in(0, \frac{2}{N}) $ with $ N\ge 2 $. Moreover, the function $ V:\mathbb{R}^{N}\rightarrow [0, +\infty) $ is continuous and bounded. By using the variational methods, we can prove that, when $ V $ satisfies four different assumptions, $ m_{\gamma, a} $ are all achieved.

Details

Language :
English
ISSN :
26881594
Volume :
31
Issue :
7
Database :
Directory of Open Access Journals
Journal :
Electronic Research Archive
Publication Type :
Academic Journal
Accession number :
edsdoj.168bcdd14a463a9ed65da1080d81c5
Document Type :
article
Full Text :
https://doi.org/10.3934/era.2023191?viewType=HTML