Back to Search Start Over

Real-time correction of channel-bed roughness and water level in river network hydrodynamic modeling for accurate forecasting

Authors :
Yifan Chen
Feifeng Cao
Weiping Cheng
Bin Liu
Pubing Yu
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-18 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The accuracy and reliability of hydrodynamic models are sensitive to both hydraulic state variables and model parameters, particularly the bed roughness, while their simultaneous real-time corrections and corresponding effects still need to be well-established and understood. This paper presents a real-time data assimilation model that corrects channel-bed roughness and water level in a river network hydrodynamic model, ensuring its accuracy and reliability. Experiments and parameter analysis evaluated the effect of initial roughness and observation noise level on model performance. Correcting both roughness and water level improved filtering time and forecasting accuracy by up to 63% and 80%, respectively, compared to methods only correcting water level. The filtering time was reduced by 44–63%, and the water level forecasting RMSE decreased by up to 80%. Both models experienced increased filtering time and forecasting error as observation noise increased, but the proposed model had a lower increase. With accurate hydraulic state measurement (e.g., 0.005 m error), the model achieved negligible water level forecasting error after 7 h of data assimilation. The model's accuracy depended on the initial channel-bed roughness, and the algorithm enables real-time roughness correction, making it useful for flood forecasting.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.16f7523f2d4340b18b7b080ec22c83ef
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-42791-x