Back to Search
Start Over
Nuclear linear-chain structure arises in carbon-14
- Source :
- Communications Physics, Vol 6, Iss 1, Pp 1-10 (2023)
- Publication Year :
- 2023
- Publisher :
- Nature Portfolio, 2023.
-
Abstract
- Abstract The shape and internal structure of an atomic nucleus can change significantly with increasing excitation energy, angular momentum, or isospin asymmetry. As an example of this structural evolution, linear-chain configurations in carbon or heavier isotopes have been predicted for decades. Recent studies have found non-stability of this structure in 12C while evidenced its appearance in 16C. It is then necessary to investigate the linear-chain molecular structures in 14C to clarify the exact location on the nuclear chart where this structure begins to emerge, and thus to benchmark theoretical models. Here we show a cluster-decay experiment for 14C with all final particles coincidentally detected, allowing a high Q-value resolution, and thus a clear decay-path selection. Unambiguous spin-parity analyses are conducted, strongly evidencing the emergence of the π-bond linear-chain molecular rotational band in 14C. The present results encourage further studies on even longer chain configurations in heavier neutron-rich nuclei.
- Subjects :
- Astrophysics
QB460-466
Physics
QC1-999
Subjects
Details
- Language :
- English
- ISSN :
- 23993650
- Volume :
- 6
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.172ff9c6e670460f8c5631bc52ec4327
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s42005-023-01342-6