Back to Search Start Over

Estimation of Changes of Forest Structural Attributes at Three Different Spatial Aggregation Levels in Northern California using Multitemporal LiDAR

Authors :
Francisco Mauro
Martin Ritchie
Brian Wing
Bryce Frank
Vicente Monleon
Hailemariam Temesgen
Andrew Hudak
Source :
Remote Sensing, Vol 11, Iss 8, p 923 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

Accurate estimates of growth and structural changes are key for forest management tasks such as determination of optimal rotation times, optimal rotation times, site indices and for identifying areas experiencing difficulties to regenerate. Estimation of structural changes, especially for biomass, is also key to quantify greenhouse gas (GHG) emissions/sequestration. We compared two different modeling strategies to estimate changes in V, BA and B, at three different spatial aggregation levels using auxiliary information from two light detection and ranging (LiDAR) flights. The study area is Blacks Mountains Experimental Forest, a ponderosa pine dominated forest in Northern California for which two LiDAR acquisitions separated by six years were available. Analyzed strategies consisted of (1) directly modeling the observed changes as a function of the LiDAR auxiliary information ( δ -modeling method) and (2) modeling V, BA and B at two different points in time, including a term to account for the temporal correlation, and then computing the changes as the difference between the predicted values of V, BA and B for time two and time one. We analyzed predictions and measures of uncertainty at three different level of aggregation (i.e., pixels, stands or compartments and the entire study area). Results showed that changes were very weakly correlated with the LiDAR auxiliary information. Both modeling alternatives provided similar results with a better performance of the δ -modeling for the entire study area; however, this method also showed some inconsistencies and seemed to be very prone to extrapolation problems. The y -modeling method, which seems to be less prone to extrapolation problems, allows obtaining more outputs that are flexible and can outperform the δ -modeling method at the stand level. The weak correlation between changes in structural attributes and LiDAR auxiliary information indicates that pixel-level maps have very large uncertainties and estimation of change clearly requires some degree of spatial aggregation; additionally, in similar environments, it might be necessary to increase the time lapse between LiDAR acquisitions to obtain reliable estimates of change.

Details

Language :
English
ISSN :
20724292
Volume :
11
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.17c6f56b7193484aadc0e39021dc0eee
Document Type :
article
Full Text :
https://doi.org/10.3390/rs11080923