Back to Search Start Over

Differential acclimation responses to irradiance and temperature in two co-occurring seaweed species in Arctic fjords

Authors :
Johanna Marambio
Kai Bischof
Source :
Polar Research, Vol 40, Pp 1-14 (2021)
Publication Year :
2021
Publisher :
Norwegian Polar Institute, 2021.

Abstract

Arctic fjord systems experience large amplitudes of change in temperature and radiation regime due to climate warming and the related decrease in sea ice. The resultant increase in irradiance entering the water column influences photosynthetic activity of benthic and pelagic primary producers. The subtidal brown alga Desmarestia aculeata and the intertidal red alga Palmaria palmata populate the cold-temperate coasts of the North Atlantic, reaching the polar zone. To evaluate their acclimation potential, we collected both species in Kongsfjorden, Svalbard (78.9°N, 11.9°E), during the Arctic summer and exposed specimens to two different PAR levels (50 and 500 μmol photons m−2 s−1) and temperatures (0, 4 and 8 °C) for 21 days. Photosynthetic parameters and biochemical features (pigment concentration and antioxidants) were assessed. In general, high irradiance was the factor that generated a negative effect for D. aculeata and P. palmata in the photosynthetic parameters of the photosynthesis–irradiance curve and Fv/Fm. The pigment concentration in both species tended to decrease with increasing irradiance. Antioxidant level showed different trends for both species: in D. aculeata, antioxidant potential increased with high irradiance and temperature, while in P. palmata, it only increased with high irradiance. Both species showed responses to the interaction of irradiance and temperature, although D. aculeata was more sensitive to high irradiance than P. palmata. Our study shows how these species, which have similar geographical distribution in the North Atlantic and the Arctic but belong to different taxonomic lineages, have similar strategies of acclimation, although they respond differently to ecophysiological parameters.

Details

Language :
English
ISSN :
08000395 and 17518369
Volume :
40
Database :
Directory of Open Access Journals
Journal :
Polar Research
Publication Type :
Academic Journal
Accession number :
edsdoj.17d249dbc36548bf84aa32c4ad898bf5
Document Type :
article
Full Text :
https://doi.org/10.33265/polar.v40.5702