Back to Search
Start Over
Visualizing temperature-dependent phase stability in high entropy alloys
- Source :
- npj Computational Materials, Vol 7, Iss 1, Pp 1-9 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Portfolio, 2021.
-
Abstract
- Abstract High entropy alloys (HEAs) contain near equimolar amounts of five or more elements and are a compelling space for materials design. In the design of HEAs, great emphasis is placed on identifying thermodynamic conditions for single-phase and multi-phase stability regions, but this process is hindered by the difficulty of navigating stability relationships in high-component spaces. Traditional phase diagrams use barycentric coordinates to represent composition axes, which require (N – 1) spatial dimensions to represent an N-component system, meaning that HEA systems with N > 4 components cannot be readily visualized. Here, we propose forgoing barycentric composition axes in favor of two energy axes: a formation-energy axis and a ‘reaction energy’ axis. These Inverse Hull Webs offer an information-dense 2D representation that successfully captures complex phase stability relationships in N ≥ 5 component systems. We use our proposed diagrams to visualize the transition of HEA solid-solutions from high-temperature stability to metastability upon quenching, and identify important thermodynamic features that are correlated with the persistence or decomposition of metastable HEAs.
Details
- Language :
- English
- ISSN :
- 20573960
- Volume :
- 7
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- npj Computational Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.18d31f47187b49b1a9226bfe99a59729
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41524-021-00626-1