Back to Search Start Over

A New 3D Iodoargentate Hybrid: Structure, Optical/Photoelectric Performance and Theoretical Research

Authors :
Jun Li
Shuyue Xie
Ming Pang
Jiacheng Zhu
Jinting Wu
Yongdi Zhang
Bo Zhang
Source :
Molecules, Vol 28, Iss 24, p 8033 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The explorations of new three-dimensional (3D) microporous metal halides, especially the iodoargentate-based hybrids, and understanding of their structure-activity relationships are still quite essential but full of great challenges. Herein, with the aromatic 4,4′-dpa (4,4′-dpa = 4,4′-dipyridylamine) ligands as the structural directing agents, we solvothermal synthesized and structurally characterized a novel member of microporous iodoargentate family, namely [H2-4,4′-dpa]Ag6I8 (1). Compound 1 possesses a unique and complicated 3D [Ag6I8]n2n− anionic architecture that was built up from the unusual hexameric [Ag6I13] secondary building units (SBUs). Research on optical properties indicated that compound 1 exhibited semiconductor behavior, with an optical band gap of 2.50 eV. Under the alternate irradiation of light, prominent photoelectric switching abilities could be achieved by compound [H2-4,4′-dpa]Ag6I8, whose photocurrent densities (0.37 μA·cm−2 for visible light and 1.23 μA·cm−2 for full-spectrum) compared well with or exceeded those of some high-performance halide counterparts. Further theoretical calculations revealed that the relatively dispersed conduction bands (CBs) structures in compound 1 induced higher electron mobilities, which may be responsible for its good photoelectricity. Presented in this work also comprised the analyses of Hirshfeld surface, powder X-ray diffractometer (PXRD), thermogravimetric measurement, energy-dispersive X-ray spectrum (EDX) along with X-ray photoelectron spectroscopy (XPS).

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
24
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.19048b1548e94287a1d20358c3be6526
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules28248033