Back to Search Start Over

Multi-method genome- and epigenome-wide studies of inflammatory protein levels in healthy older adults

Authors :
Robert F. Hillary
Daniel Trejo-Banos
Athanasios Kousathanas
Daniel L. McCartney
Sarah E. Harris
Anna J. Stevenson
Marion Patxot
Sven Erik Ojavee
Qian Zhang
David C. Liewald
Craig W. Ritchie
Kathryn L. Evans
Elliot M. Tucker-Drob
Naomi R. Wray
Allan F. McRae
Peter M. Visscher
Ian J. Deary
Matthew R. Robinson
Riccardo E. Marioni
Source :
Genome Medicine, Vol 12, Iss 1, Pp 1-15 (2020)
Publication Year :
2020
Publisher :
BMC, 2020.

Abstract

Abstract Background The molecular factors which control circulating levels of inflammatory proteins are not well understood. Furthermore, association studies between molecular probes and human traits are often performed by linear model-based methods which may fail to account for complex structure and interrelationships within molecular datasets. Methods In this study, we perform genome- and epigenome-wide association studies (GWAS/EWAS) on the levels of 70 plasma-derived inflammatory protein biomarkers in healthy older adults (Lothian Birth Cohort 1936; n = 876; Olink® inflammation panel). We employ a Bayesian framework (BayesR+) which can account for issues pertaining to data structure and unknown confounding variables (with sensitivity analyses using ordinary least squares- (OLS) and mixed model-based approaches). Results We identified 13 SNPs associated with 13 proteins (n = 1 SNP each) concordant across OLS and Bayesian methods. We identified 3 CpG sites spread across 3 proteins (n = 1 CpG each) that were concordant across OLS, mixed-model and Bayesian analyses. Tagged genetic variants accounted for up to 45% of variance in protein levels (for MCP2, 36% of variance alone attributable to 1 polymorphism). Methylation data accounted for up to 46% of variation in protein levels (for CXCL10). Up to 66% of variation in protein levels (for VEGFA) was explained using genetic and epigenetic data combined. We demonstrated putative causal relationships between CD6 and IL18R1 with inflammatory bowel disease and between IL12B and Crohn’s disease. Conclusions Our data may aid understanding of the molecular regulation of the circulating inflammatory proteome as well as causal relationships between inflammatory mediators and disease.

Subjects

Subjects :
Medicine
Genetics
QH426-470

Details

Language :
English
ISSN :
1756994X
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Genome Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.19534d9a8ec84e659ab1448d4b67f986
Document Type :
article
Full Text :
https://doi.org/10.1186/s13073-020-00754-1