Back to Search Start Over

Renal cancer-derived exosomes induce tumor immune tolerance by MDSCs-mediated antigen-specific immunosuppression

Authors :
Yingying Gao
Haoyu Xu
Nan Li
Hexi Wang
Lei Ma
Shiyou Chen
Jiayu Liu
Yongbo Zheng
Yao Zhang
Source :
Cell Communication and Signaling, Vol 18, Iss 1, Pp 1-14 (2020)
Publication Year :
2020
Publisher :
BMC, 2020.

Abstract

Abstract Backgound Although Myeloid-derived suppressor cells (MDSCs) have a prominent ability to suppress the immune responses of T lymphocytes and propel tumor immune escape, a lack of profound systemic immunesuppression in tumor-bearing mice and tumor patients. The underlying mechanism of these remains unclear. Methods For this purpose, renal cancer-derived exosomes (RDEs) were first labeled with PKH67 and been observed the internalization by MDSCs. Flow cytometry analysis showed the proportion and activity change of MDSCs in spleen and bone marrow induced by RDEs. Further, western blot experiments were used to verify triggered mechanism of MDSCs by RDEs. Finally, proliferation and cytotoxicity of cytotoxic T lymphocytes (CTLs) co-cultured with MDSCs in vitro and a series of experiments in vivo were performed to demonstrate the specific inhibitory effect of RDEs-induced MDSCs. Results This study suggested that RDEs crucially contributed to presenting antigenic information, activating and driving specific immunosuppressive effect to MDSCs. HSP70, which is highly expressed in RDEs, initiate this process in a toll like receptor 2 (TLR2)-dependent manner. Importantly, RDEs-induced MDSCs could exert an antigen-specific immunosuppression effect on CTL and specific promote renal tumors-growth and immune escape in consequence. Conclusion The immunosuppression mediated by MDSCs which is induced by RDEs is antigen-specific. HSP70, which is highly expressed in RDEs, plays a pivotal role in this process. Targeted abrogating the function of MDSCs, or eliminating the expression of HSP70 in exosomes, or blocking the crosstalk between them provides a new direction and theoretical support for future immunotherapy. Video abstract Graphical abstract

Details

Language :
English
ISSN :
1478811X
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Cell Communication and Signaling
Publication Type :
Academic Journal
Accession number :
edsdoj.195df14fa8a4991ba46f4549ffabedc
Document Type :
article
Full Text :
https://doi.org/10.1186/s12964-020-00611-z