Back to Search Start Over

Plakoglobin is a mechanoresponsive regulator of naive pluripotency

Authors :
Timo N. Kohler
Joachim De Jonghe
Anna L. Ellermann
Ayaka Yanagida
Michael Herger
Erin M. Slatery
Antonia Weberling
Clara Munger
Katrin Fischer
Carla Mulas
Alex Winkel
Connor Ross
Sophie Bergmann
Kristian Franze
Kevin Chalut
Jennifer Nichols
Thorsten E. Boroviak
Florian Hollfelder
Source :
Nature Communications, Vol 14, Iss 1, Pp 1-19 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of β-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos – further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.19d37a4e6ae24ca8b14f83a6a064a669
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-023-39515-0