Back to Search Start Over

Aberrant expression of NKL homeobox genes HMX2 and HMX3 interferes with cell differentiation in acute myeloid leukemia.

Authors :
Stefan Nagel
Claudia Pommerenke
Corinna Meyer
Roderick A F MacLeod
Hans G Drexler
Source :
PLoS ONE, Vol 15, Iss 10, p e0240120 (2020)
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

The NKL-code describes normal expression patterns of NKL homeobox genes in hematopoiesis. Aberrant expression of NKL homeobox gene subclass members have been reported in several hematopoietic malignancies including acute myeloid leukemia (AML). Here, we analyzed the oncogenic role of the HMX-group of NKL homeobox genes in AML. Public expression profiling data-available for HMX1 and HMX2-indicate aberrant activity of HMX2 in circa 2% AML patients overall, rising to 31% in those with KMT2A/MLL rearrangements whereas HMX1 expression remains inconspicuous. AML cell lines EOL-1, MV4-11 and MOLM-13 expressed both, HMX2 and neighboring HMX3 genes, and harbored KMT2A aberrations, suggesting their potential functional association. Surprisingly, knockdown experiments in these cell lines demonstrated that KMT2A inhibited HMX2/3 which, in turn, did not regulate KMT2A expression. Furthermore, karyotyping and genomic profiling analysis excluded rearrangements of the HMX2/3 locus in these cell lines. However, comparative expression profiling and subsequent functional analyses revealed that IRF8, IL7- and WNT-signalling activated HMX2/3 expression while TNFa/NFkB- signalling proved inhibitory. Whole genome sequencing of EOL-1 identified two mutations in the regulatory upstream regions of HMX2/3 resulting in generation of a consensus ETS-site and transformation of a former NFkB-site into an SP1-site. Reporter-gene assays demonstrated that both mutations contributed to HMX2/3 activation, modifying ETS1/ELK1- and TNFalpha-mediated gene regulation. Moreover, DMSO-induced eosinophilic differentiation of EOL-1 cells coincided with HMX2/3 downregulation while knockdown of HMX2 induced cell differentiation, collectively supporting a fundamental role for these genes in myeloid differentiation arrest. Finally, target genes of HMX2/3 were identified in EOL-1 and included suppression of differentiation gene EPX, and activation of fusion gene FIP1L1-PDGFRA and receptor-encoding gene HTR7, both of which enhanced oncogenic ERK-signalling. Taken together, our study documents a leukemic role for deregulated NKL homeobox genes HMX2 and HMX3 in AML, revealing molecular mechanisms of myeloid differentiation arrest.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
10
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.1a12ff8a88d444959c8288688ac5ff68
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0240120