Back to Search Start Over

Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling

Authors :
R. Locatelli
P. Bousquet
F. Chevallier
A. Fortems-Cheney
S. Szopa
M. Saunois
A. Agusti-Panareda
D. Bergmann
H. Bian
P. Cameron-Smith
M. P. Chipperfield
E. Gloor
S. Houweling
S. R. Kawa
M. Krol
P. K. Patra
R. G. Prinn
M. Rigby
R. Saito
C. Wilson
Source :
Atmospheric Chemistry and Physics, Vol 13, Iss 19, Pp 9917-9937 (2013)
Publication Year :
2013
Publisher :
Copernicus Publications, 2013.

Abstract

A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10 synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. In our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr−1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr−1 in North America to 7 Tg yr−1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems. Future inversions should include more accurately prescribed observation covariances matrices in order to limit the impact of transport model errors on estimated methane fluxes.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
13
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.1a4f4a84aa3c49a1a8a17f9d8330f17d
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-13-9917-2013