Back to Search Start Over

Multidirectional Attention Fusion Network for SAR Change Detection

Authors :
Lingling Li
Qiong Liu
Guojin Cao
Licheng Jiao
Fang Liu
Xu Liu
Puhua Chen
Source :
Remote Sensing, Vol 16, Iss 19, p 3590 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Synthetic Aperture Radar (SAR) imaging is essential for monitoring geomorphic changes, urban transformations, and natural disasters. However, the inherent complexities of SAR, particularly pronounced speckle noise, often lead to numerous false detections. To address these challenges, we propose the Multidirectional Attention Fusion Network (MDAF-Net), an advanced framework that significantly enhances image quality and detection accuracy. Firstly, we introduce the Multidirectional Filter (MF), which employs side-window filtering techniques and eight directional filters. This approach supports multidirectional image processing, effectively suppressing speckle noise and precisely preserving edge details. By utilizing deep neural network components, such as average pooling, the MF dynamically adapts to different noise patterns and textures, thereby enhancing image clarity and contrast. Building on this innovation, MDAF-Net integrates multidirectional feature learning with a multiscale self-attention mechanism. This design utilizes local edge information for robust noise suppression and combines global and local contextual data, enhancing the model’s contextual understanding and adaptability across various scenarios. Rigorous testing on six SAR datasets demonstrated that MDAF-Net achieves superior detection accuracy compared with other methods. On average, the Kappa coefficient improved by approximately 1.14%, substantially reducing errors and enhancing change detection precision.

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
19
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.1a54a8217e41e9b4bc7b1db4171d5e
Document Type :
article
Full Text :
https://doi.org/10.3390/rs16193590