Back to Search Start Over

Repeated inhalation of GM-CSF by nonhuman primates induces bronchus-associated lymphoid tissue along the lower respiratory tract

Authors :
Ryushi Tazawa
Riuko Ohashi
Nobutaka Kitamura
Takahiro Tanaka
Kazuhide Nakagaki
Sachiko Yuki
Atsushi Fujiwara
Koh Nakata
Source :
Respiratory Research, Vol 25, Iss 1, Pp 1-16 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Repeated inhalation of granulocyte-macrophage colony-stimulating factor (GM-CSF) was recently approved in Japan as a treatment for autoimmune pulmonary alveolar proteinosis. However, the detailed physiological and pathological effects of repeated inhalation in the long term, especially at increasing doses, remain unclear. Methods In this chronic safety study, we administered 24 cynomolgus monkeys (Macaca fascicularis) aged 2–3 years with aerosolized sargramostim (a yeast-derived recombinant human GM-CSF [rhGM-CSF]) biweekly for 26 weeks across four dosing groups (0, 5, 100, and 500 µg/kg/day). We measured the serum GM-CSF antibody (GM-Ab) concentration by an ELISA and assessed the neutralizing capacity of GM-Ab using the GM-CSF-dependent cell line TF-1. We subjected lung tissue samples taken from all monkeys at 27 weeks to histopathological assessment using a sargramostim-specific monoclonal antibody to detect localization of residual sargramostim. Results All the animals maintained good body condition and showed steady weight gain throughout the study. The pathological analyses of the lung revealed the formation of induced bronchus-associated lymphoid tissue (iBALT) in the lower respiratory tract, even at the clinical dose of 5 µg/kg/day. There was a relationship between the number or size of BALT and sargramostim dose or the serum GM-Ab levels. Immunohistochemical analyses revealed GM-Ab–producing cells in the follicular region of iBALT, with residual sargramostim in the follicles. Leucocyte counts were inversely correlated with GM-Ab levels in the high-dose groups. Additionally, serum GM-Ab from the treated animals significantly suppressed the alveolar macrophage proliferation activity of both Cynomolgus recombinant and rhGM-CSF in vitro. Conclusion Long-term repeated inhalation of sargramostim led to iBALT formation in the lower respiratory tract, even at the clinical dose of 5 µg/kg/day, with the extent of iBALT formation increasing in a dose-dependent manner. Inhaled sargramostim was localized to the follicular region of iBALT nodules, which may induce the production of GM-Ab.

Details

Language :
English
ISSN :
1465993X
Volume :
25
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Respiratory Research
Publication Type :
Academic Journal
Accession number :
edsdoj.1a62f140078445beaa85530c0f805c98
Document Type :
article
Full Text :
https://doi.org/10.1186/s12931-024-03003-w