Back to Search
Start Over
Clinical Characteristics, Antimicrobial Resistance, Virulence Genes and Multi-Locus Sequence Typing of Non-Typhoidal Salmonella Serovar Typhimurium and Enteritidis Strains Isolated from Patients in Chiang Mai, Thailand
- Source :
- Microorganisms, Vol 11, Iss 10, p 2425 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Non-typhoidal salmonellosis (NTS) caused by ingesting Salmonella enterica contaminated food or drink remains a major bacterial foodborne disease. Clinical outcomes of NTS range from self-limited gastroenteritis to life-threatening invasive NTS (iNTS). In this study, we isolated Salmonella spp. from the stool and blood of patients hospitalized at Maharaj Nakorn Chiang Mai Hospital, Chiang Mai, Thailand, between 2016–2021 (a total of 395 cases). Then, serovar Typhimurium and Enteritidis were identified and further characterized by multiplex PCR, and multi-locus sequence typing. Our data show that multidrug resistance (MDR) sequence type 34 (ST34) and ST11 are the predominant sequence types for serovars Typhimurium and Enteritidis, respectively. Most S. Typhimurium ST34 lacks spvB, and most S. Enteritidis ST11 harbor sseI, sodCI, rpoS and spvB genes. NTS can be found in a wide range of ages, and anemia could be a significant factor for S. Typhimurium infection (86.3%). Both S. Typhimurium (6.7%) and S. Enteritidis (25.0%) can cause iNTS in immunocompromised patients. S. Typhimurium conferred MDR phenotype higher than S. Enteritidis with multiple antibiotic resistance indexes of 0.22 and 0.04, respectively. Here, we characterized the important S. Typhimurium, S. Enteritidis, and human clinical factors of NTS within the region.
Details
- Language :
- English
- ISSN :
- 20762607
- Volume :
- 11
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Microorganisms
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1ac54277d5ef49459b128be28dd6d49e
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/microorganisms11102425