Back to Search Start Over

Dynamic Mechanical and Biological Characterization of New 3D-Printed Polymeric Dental Materials: A Preliminary Study

Authors :
Chiara Valenti
Stefano Pagano
Iva Xhimitiku
Mikaela Kutrolli
Francesca Masciotti
Tommaso Zara
Tiberio Truffarelli
Giulio Tribbiani
Alessandro Nanussi
Lorella Marinucci
Source :
Prosthesis, Vol 6, Iss 2, Pp 263-273 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The literature shows evidence of the mechanical investigation of numerous polymeric dental biomaterials using a static approach. A more representative mechanical analysis of such materials must take into account the dynamic masticatory load of the oral cavity. The aim of this work is to study the dynamic mechanical proprieties and provide an in vitro characterization of 11 3D-printed new dental biomaterials to understand their clinical applications under physiological conditions. The analysis included Dynamical Mechanical Analysis (DMA) and an MTT cytotoxicity assay. The mechanical results at low frequencies (1–11 Hz) show high uncertainty, less fragility, and less strength. The biological results show a significant reduction in cell viability (p < 0.01) at both the 3 and 24 h timepoints, with a degree of recovery observed at 24 h. To assess the clinical potential of dental biomaterials, it is necessary to determine whether there are good dynamic mechanical properties and reduced adverse biological effects on oral cells. This may allow for the facile fabrication via 3D printing of prosthetic devices that can support masticatory loads over long periods of time. Further investigations of the presented polymeric materials are needed, exploring biological assessments for longer than 24 h.

Details

Language :
English
ISSN :
26731592
Volume :
6
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Prosthesis
Publication Type :
Academic Journal
Accession number :
edsdoj.1b1681ceb5b044ba889bd0e2a3f0da56
Document Type :
article
Full Text :
https://doi.org/10.3390/prosthesis6020020