Back to Search Start Over

CAROTIDNet: A Novel Carotid Symptomatic/Asymptomatic Plaque Detection System Using CNN-Based Tangent Optimization Algorithm in B-Mode Ultrasound Images

Authors :
Tanweer Ali
Sameena Pathan
Massimo Salvi
Kristen M. Meiburger
Filippo Molinari
U. Rajendra Acharya
Source :
IEEE Access, Vol 12, Pp 73970-73979 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

Deep learning methods have shown promise for automated medical image analysis tasks. However, class imbalance is a common challenge that can negatively impact model performance, especially for tasks with minority classes that are clinically significant. This study aims to address this challenge through a novel hyperparameter optimization technique for training convolutional neural networks on imbalanced data. We developed a custom Convolutional Neural Network (CNN) architecture and introduced a Tangent Optimization Algorithm (TOA) based on the trigonometric properties of the tangent function. The TOA optimizes hyperparameters during training without requiring data preprocessing or augmentation steps. We applied our approach to classifying B-mode ultrasound carotid artery plaque images as symptomatic or asymptomatic using a dataset with significant class imbalance. On k-fold cross-validation, our method achieved an average accuracy of 98.82%, a sensitivity of 99.41%, and a specificity of 95.74%. The proposed optimization technique provides a computationally efficient and interpretable solution for training deep learning models on unbalanced medical image datasets.

Details

Language :
English
ISSN :
21693536
Volume :
12
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.1b2e81f384c74ca9a8ec76c921de86ed
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2024.3404023