Back to Search Start Over

Soil pH amendment alters the abundance, diversity, and composition of microbial communities in two contrasting agricultural soils

Authors :
Ruonan Xiong
Xinhua He
Nan Gao
Qing Li
Zijian Qiu
Yixin Hou
Weishou Shen
Source :
Microbiology Spectrum, Vol 12, Iss 8 (2024)
Publication Year :
2024
Publisher :
American Society for Microbiology, 2024.

Abstract

ABSTRACT Soil microorganisms are the most active participants in terrestrial ecosystems, and have key roles in biogeochemical cycles and ecosystem functions. Despite the extensive research on soil pH as a key predictor of microbial community and composition, a limitation of these studies lies in determining whether bacterial and/or fungal communities are directly or indirectly influenced by pH. We conducted a controlled laboratory experiment to investigate the effects of soil pH amendment (+/- 1–2 units) with six levels on soil microbial communities in two contrasting Chinese agricultural soils (pH 8.43 in Dezhou, located in the North China Plain, Shandong vs pH 6.17 in Wuxi, located in the Taihu Lake region, Jiangsu, east China). Results showed that the fungal diversity and composition were related to soil pH, but the effects were much lower than the effects of soil pH on bacterial community in two soils. The diversity and composition of bacterial communities were more closely associated with soil pH in Wuxi soils compared to Dezhou soils. The alpha diversity of bacterial communities peaked near in situ pH levels in both soils, displaying a quadratic fitting pattern. Redundancy analysis and variation partition analysis indicated that soil pH affected bacterial community and composition by directly imposing a physiological constraint on soil bacteria and indirectly altering soil characteristics (e.g., nutrient availability). The study also examined complete curves of taxa relative abundances at the phylum and family levels in response to soil pH, with most relationships conforming to a quadratic fitting pattern, indicating soil pH is a reliable predictor. Furthermore, soil pH amendment affected the transformation of nitrogen and the abundances of functional genes involved in the nitrogen cycle, and methane production and consumption. Overall, results from this study would enhance our comprehension of how soil microorganisms in contrasting farmlands will respond to soil pH changes, and would contribute to more effective soil management and conservation strategies.IMPORTANCEThis study delves into the impact of soil pH on microbial communities, investigating whether pH directly or indirectly influences bacterial and fungal communities. The research involved two contrasting soils subjected to a 1–2 pH unit amendment. Results indicate bacterial community composition was shaped by soil pH through physiological constraints and nutrient limitations. We found that most taxa relative abundances at the phylum and family levels responded to pH with a quadratic fitting pattern, indicating that soil pH is a reliable predictor. Additionally, soil pH was found to significantly influence the predicted abundance of functional genes involved in the nitrogen cycle as well as in methane production and consumption processes. These insights can contribute to develop more effective soil management and conservation strategies.

Details

Language :
English
ISSN :
21650497
Volume :
12
Issue :
8
Database :
Directory of Open Access Journals
Journal :
Microbiology Spectrum
Publication Type :
Academic Journal
Accession number :
edsdoj.1b88b1b495de4423ac339631dde1ccb4
Document Type :
article
Full Text :
https://doi.org/10.1128/spectrum.04165-23