Back to Search Start Over

A double-decomposition based parallel exact algorithm for the feedback length minimization problem

Authors :
Zhen Shang
Jin-Kao Hao
Fei Ma
Source :
PeerJ Computer Science, Vol 9, p e1597 (2023)
Publication Year :
2023
Publisher :
PeerJ Inc., 2023.

Abstract

Product development projects usually contain many interrelated activities with complex information dependences, which induce activity rework, project delay and cost overrun. To reduce negative impacts, scheduling interrelated activities in an appropriate sequence is an important issue for project managers. This study develops a double-decomposition based parallel branch-and-prune algorithm, to determine the optimal activity sequence that minimizes the total feedback length (FLMP). This algorithm decomposes FLMP from two perspectives, which enables the use of all available computing resources to solve subproblems concurrently. In addition, we propose a result-compression strategy and a hash-address strategy to enhance this algorithm. Experimental results indicate that our algorithm can find the optimal sequence for FLMP up to 27 activities within 1 h, and outperforms state of the art exact algorithms.

Details

Language :
English
ISSN :
23765992
Volume :
9
Database :
Directory of Open Access Journals
Journal :
PeerJ Computer Science
Publication Type :
Academic Journal
Accession number :
edsdoj.1b907d05457b48709c172f8807a0edef
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj-cs.1597