Back to Search Start Over

Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress

Authors :
Zhu Y
Deng G
Ji A
Yao J
Meng X
Wang J
Wang Q
Wang R
Source :
International Journal of Nanomedicine, Vol Volume 12, Pp 7143-7152 (2017)
Publication Year :
2017
Publisher :
Dove Medical Press, 2017.

Abstract

Yong Zhu,1,* Guoying Deng,2,* Anqi Ji,2 Jiayi Yao,1 Xiaoxiao Meng,1 Jinfeng Wang,1 Qian Wang,2 Qiugen Wang,2 Ruilan Wang1 1Department of Critical Care Medicine, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, 2Trauma Center, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China *These authors contributed equally to this work Abstract: Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO2 (n=18). The PQ and PQ + Se@SiO2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO2 nanospheres 1 mg/kg (in the PQ + Se@SiO2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO2 nanosphere treatment. These data indicate that porous Se@SiO2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO2 nanospheres may be a therapeutic method for use in the future for PQ poisoning. Keywords: porous Se@SiO2 nanospheres, acute lung injury, paraquat poisoning, oxidative stress, inflammatory cytokines, ROS, NF-kappa B

Details

Language :
English
ISSN :
11782013
Volume :
ume 12
Database :
Directory of Open Access Journals
Journal :
International Journal of Nanomedicine
Publication Type :
Academic Journal
Accession number :
edsdoj.1c1708d2de1c4fef8a2682fd526c9b71
Document Type :
article