Back to Search Start Over

Forgetting Enhances Episodic Control With Structured Memories

Authors :
Annik Yalnizyan-Carson
Blake A. Richards
Source :
Frontiers in Computational Neuroscience, Vol 16 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limitations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.

Details

Language :
English
ISSN :
16625188
Volume :
16
Database :
Directory of Open Access Journals
Journal :
Frontiers in Computational Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.1c2d4efe82234b939b9505a1e1cfe2d9
Document Type :
article
Full Text :
https://doi.org/10.3389/fncom.2022.757244