Back to Search Start Over

Extracellular Vesicles Regulate Biofilm Formation and Yeast-to-Hypha Differentiation in Candida albicans

Authors :
Leandro Honorato
Joana Feital Demetrio de Araujo
Cameron C. Ellis
Alicia Corbellini Piffer
Yan Pereira
Susana Frases
Glauber Ribeiro de Sousa Araújo
Bruno Pontes
Maria Tays Mendes
Marcos Dias Pereira
Allan J. Guimarães
Natalia Martins da Silva
Gabriele Vargas
Luna Joffe
Maurizio Del Poeta
Joshua D. Nosanchuk
Daniel Zamith-Miranda
Flávia Coelho Garcia dos Reis
Haroldo Cesar de Oliveira
Marcio L. Rodrigues
Sharon de Toledo Martins
Lysangela Ronalte Alves
Igor C. Almeida
Leonardo Nimrichter
Source :
mBio, Vol 13, Iss 3 (2022)
Publication Year :
2022
Publisher :
American Society for Microbiology, 2022.

Abstract

ABSTRACT In this study, we investigated the influence of fungal extracellular vesicles (EVs) during biofilm formation and morphogenesis in Candida albicans. Using crystal violet staining and scanning electron microscopy (SEM), we demonstrated that C. albicans EVs inhibited biofilm formation in vitro. By time-lapse microscopy and SEM, we showed that C. albicans EV treatment stopped filamentation and promoted pseudohyphae formation with multiple budding sites. The ability of C. albicans EVs to regulate dimorphism was further compared to EVs isolated from different C. albicans strains, Saccharomyces cerevisiae, and Histoplasma capsulatum. C. albicans EVs from distinct strains inhibited yeast-to-hyphae differentiation with morphological changes occurring in less than 4 h. EVs from S. cerevisiae and H. capsulatum modestly reduced morphogenesis, and the effect was evident after 24 h of incubation. The inhibitory activity of C. albicans EVs on phase transition was promoted by a combination of lipid compounds, which were identified by gas chromatography-tandem mass spectrometry analysis as sesquiterpenes, diterpenes, and fatty acids. Remarkably, C. albicans EVs were also able to reverse filamentation. Finally, C. albicans cells treated with C. albicans EVs for 24 h lost their capacity to penetrate agar and were avirulent when inoculated into Galleria mellonella. Our results indicate that fungal EVs can regulate yeast-to-hypha differentiation, thereby inhibiting biofilm formation and attenuating virulence. IMPORTANCE The ability to undergo morphological changes during adaptation to distinct environments is exploited by Candida albicans and has a direct impact on biofilm formation and virulence. Morphogenesis is controlled by a diversity of stimuli, including osmotic stress, pH, starvation, presence of serum, and microbial components, among others. Apart from external inducers, C. albicans also produces autoregulatory substances. Farnesol and tyrosol are examples of quorum-sensing molecules (QSM) released by C. albicans to regulate yeast-to-hypha conversion. Here, we demonstrate that fungal EVs are messengers impacting biofilm formation, morphogenesis, and virulence in C. albicans. The major players exported in C. albicans EVs included sesquiterpenes, diterpenes, and fatty acids. The understanding of how C. albicans cells communicate to regulate physiology and pathogenesis can lead to novel therapeutic tools to combat candidiasis.

Details

Language :
English
ISSN :
21507511
Volume :
13
Issue :
3
Database :
Directory of Open Access Journals
Journal :
mBio
Publication Type :
Academic Journal
Accession number :
edsdoj.1c2e1fe7a63c4a189257041d9e70114a
Document Type :
article
Full Text :
https://doi.org/10.1128/mbio.00301-22