Back to Search
Start Over
The effect of neutral-surface iron oxide nanoparticles on cellular uptake and signaling pathways
- Source :
- International Journal of Nanomedicine, Vol Volume 11, Pp 4595-4607 (2016)
- Publication Year :
- 2016
- Publisher :
- Dove Medical Press, 2016.
-
Abstract
- Eunjoo Kim,1 Joon Mee Kim,2 Lucia Kim,2 Suk Jin Choi,2 In Suh Park,2 Jee Young Han,2 Young Chae Chu,2 Eun Sook Choi,1 Kun Na,3 Soon-Sun Hong4 1Division of Nano and Energy Convergence Research, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 2Department of Pathology, Inha University College of Medicine, Incheon, 3Department of Biotechnology, Catholic University of Korea, Bucheon, 4Department of Biomedical Sciences, Inha University College of Medicine, Incheon, South Korea Abstract: In recent years, iron oxide nanoparticles (IONPs) have been applied widely to biomedical fields. However, the relationship between the physicochemical properties of IONPs and their biological behavior is not fully understood yet. We prepared 3-methacryloxypropyl­trimethoxysilane (MPS)-coated IONPs, which have a neutral hydrophobic surface, and compared their biological behavior to that of Resovist (ferucarbotran), a commercialized IONP formulation modified with carboxymethyl dextran. The rate of MPS-IONP uptake by human aortic endothelial cells (HAoECs) was higher than ferucarbotran uptake, indicating that the neutral hydrophobic nature of MPS-IONPs allowed them to be absorbed more readily through the plasma membrane. However, the signaling pathways activated by MPS-IONPs and ferucarbotran were comparable, suggesting that surface charge is not a key factor for inducing changes in HAoECs. In vivo fate analysis showed that MPS-IONPs accumulated for longer periods in tissues than hydrophilic ferucarbotran. These findings could enlarge our understanding of NP behavior for advanced applications in the biomedical field. Keywords: iron oxide nanoparticles, neutral hydrophobic surface, signaling pathway, uptake, accumulation, reactive oxygen species (ROS)
Details
- Language :
- English
- ISSN :
- 11782013
- Volume :
- ume 11
- Database :
- Directory of Open Access Journals
- Journal :
- International Journal of Nanomedicine
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1c447792529548b58ae5ec01bea4d02c
- Document Type :
- article