Back to Search Start Over

Heterogeneous lineage-specific arginine deiminase expression within dental microbiome species

Authors :
Allison E. Mann
Brinta Chakraborty
Lauren M. O'Connell
Marcelle M. Nascimento
Robert A. Burne
Vincent P. Richards
Source :
Microbiology Spectrum, Vol 12, Iss 4 (2024)
Publication Year :
2024
Publisher :
American Society for Microbiology, 2024.

Abstract

ABSTRACTArginine catabolism by the bacterial arginine deiminase system (ADS) has anticariogenic properties through the production of ammonia, which modulates the pH of the oral environment. Given the potential protective capacity of the ADS pathway, the exploitation of ADS-competent oral microbes through pre- or probiotic applications is a promising therapeutic target to prevent tooth decay. To date, most investigations of the ADS in the oral cavity and its relation to caries have focused on indirect measures of activity or on specific bacterial groups, yet the pervasiveness and rate of expression of the ADS operon in diverse mixed microbial communities in oral health and disease remain an open question. Here, we use a multivariate approach, combining ultra-deep metatranscriptomic sequencing with paired metataxonomic and in vitro citrulline quantification to characterize the microbial community and ADS operon expression in healthy and late-stage cavitated teeth. While ADS activity is higher in healthy teeth, we identify multiple bacterial lineages with upregulated ADS activity on cavitated teeth that are distinct from those found on healthy teeth using both reference-based mapping and de novo assembly methods. Our dual metataxonomic and metatranscriptomic approach demonstrates the importance of species abundance for gene expression data interpretation and that patterns of differential expression can be skewed by low-abundance groups. Finally, we identify several potential candidate probiotic bacterial lineages within species that may be useful therapeutic targets for the prevention of tooth decay and propose that the development of a strain-specific, mixed-microbial probiotic may be a beneficial approach given the heterogeneity of taxa identified here across health groups.IMPORTANCETooth decay is the most common preventable chronic disease, affecting more than two billion people globally. The development of caries on teeth is primarily a consequence of acid production by cariogenic bacteria that inhabit the plaque microbiome. Other bacterial strains in the oral cavity may suppress or prevent tooth decay by producing ammonia as a byproduct of the arginine deiminase metabolic pathway, increasing the pH of the plaque biofilm. While the benefits of arginine metabolism on oral health have been extensively documented in specific bacterial groups, the prevalence and consistency of arginine deiminase system (ADS) activity among oral bacteria in a community context remain an open question. In the current study, we use a multi-omics approach to document the pervasiveness of the expression of the ADS operon in both health and disease to better understand the conditions in which ADS activity may prevent tooth decay.

Details

Language :
English
ISSN :
21650497
Volume :
12
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Microbiology Spectrum
Publication Type :
Academic Journal
Accession number :
edsdoj.1c8e42489e5e4f7e999de7b2c95a0acc
Document Type :
article
Full Text :
https://doi.org/10.1128/spectrum.01445-23