Back to Search Start Over

Exosomes derived from mouse vibrissa dermal papilla cells promote hair follicle regeneration during wound healing by activating Wnt/β-catenin signaling pathway

Authors :
Yage Shang
Mengyang Li
Lixia Zhang
Chao Han
Kuo Shen
Kejia Wang
Yan Li
Yue Zhang
Liang Luo
Yanhui Jia
Kai Guo
Weixia Cai
Jian Zhang
Xujie Wang
Hongtao Wang
Dahai Hu
Source :
Journal of Nanobiotechnology, Vol 22, Iss 1, Pp 1-19 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors β-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/β-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.

Details

Language :
English
ISSN :
14773155
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.1d0444877e49483fbabdcc7c31bf232f
Document Type :
article
Full Text :
https://doi.org/10.1186/s12951-024-02689-w