Back to Search Start Over

Bulk-Like SnO2-Fe2O3@Carbon Composite as a High-Performance Anode for Lithium Ion Batteries

Authors :
Jie Deng
Yu Dai
Zhe Xiao
Shuang Song
Hui Dai
Luming Li
Jing Li
Source :
Nanomaterials, Vol 10, Iss 2, p 249 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Boosted power handling and the reduced charging duration of Li ion cells critically rests with ionic/electronic mobility. Ion mobility in electrochemically relevant grains normally stands for an essential restriction of the velocity at which the energy of a cell can be stored/released. To offset sluggish solid-state ionic transport and achieve a superior power/energy density rating, electroactive grains often need exquisite nanoscaling, harming crucial virtues on volumetric packing density, tractability, sustainability, durability, and cost. Unlike elaborate nanostructuring, here we describe that a SnO2-Fe2O3@carbon composite—which adopts a metal oxide particles-intercalated bulk-like configuration—can insert many Li+ ions at elevated speeds, despite its micro-dimensionality. Analysis of charge transport kinetics in this tailor-made architecture unveils both much improved ion travel through compact monolithic substances and the greatly enhanced ion access to surfaces of SnO2/Fe2O3 grains. According to the well-studied battery degradation mechanism, it is that both the effective stress management and internal electric field in our as-prepared sample that result in recommendable capacity, rate behavior, and cyclic lifespan (exhibiting a high reversible capacity of 927 mAh g−1 at 0.2 A g−1 with a capacity retention of 95.1% after 100 cycles and an ultra-stable capacity of 429 mAh g−1 even over 1800 cycles at 3 A g−1). Unique materials and working rationale which ensure the swift (de)lithiation of such micrometer-dimensional monoliths may open a door for various high-power/density usages.

Details

Language :
English
ISSN :
20794991
Volume :
10
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.1d1012b39ead4afbb8c53504f1c5e102
Document Type :
article
Full Text :
https://doi.org/10.3390/nano10020249