Back to Search Start Over

HyCas9-12aGEP: an efficient genome editing platform for Corynebacterium glutamicum

Authors :
Feng Zhang
Jin-Yu Wang
Chang-Lon Li
Wei-Guo Zhang
Source :
Frontiers in Bioengineering and Biotechnology, Vol 12 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Corynebacterium glutamicum plays a crucial role as a significant industrial producer of metabolites. Despite the successful development of CRISPR-Cas9 and CRISPR-Cas12a-assisted genome editing technologies in C. glutamicum, their editing resolution and efficiency are hampered by the diverse on-target activities of guide RNAs (gRNAs). To address this problem, a hybrid CRISPR-Cas9-Cas12a genome editing platform (HyCas9-12aGEP) was developed in C. glutamicum in this study to co-express sgRNA (corresponding to SpCas9 guide RNA), crRNA (corresponding to FnCas12a guide RNA), or hfgRNA (formed by the fusion of sgRNA and crRNA). HyCas9-12aGEP improves the efficiency of mapping active gRNAs and outperforms both CRISPR-Cas9 and CRISPR-Cas12a in genome editing resolution and efficiency. In the experiment involving the deletion of the cg0697-0740 gene segment, an unexpected phenotype was observed, and HyCas9-12aGEP efficiently identified the responsible genotype from more than 40 genes. Here, HyCas9-12aGEP greatly improve our capability in terms of genome reprogramming in C. glutamicum.

Details

Language :
English
ISSN :
22964185
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Frontiers in Bioengineering and Biotechnology
Publication Type :
Academic Journal
Accession number :
edsdoj.1d2c57673d6f4bf695aa013c55f2bd4c
Document Type :
article
Full Text :
https://doi.org/10.3389/fbioe.2024.1327172