Back to Search
Start Over
A New Method of Identifying the Aerodynamic Dipole Sound Source in the Near Wall Flow
- Source :
- Mathematics, Vol 11, Iss 9, p 2070 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Consider that the sound dipole source in the flow field is composed of multiple micro-spherical oscillating sources. An aerodynamic sound source identification method is established by the relationship among the oscillating source, the radiated sound pressure, and the pressure gradient of flow in the near-wall flow field, and the formula for calculating the sound power of the sound dipole source in unsteady flow is derived. It shows that the power of sound dipole sources is proportional to the square of the oscillating force or pressure gradient. The combination of the formula and CFD method is further applied to the flow around the cylinder, which clearly presents the sound power and location characteristics of sound dipole sources. Further, the relationship between the sound source and the flow separation, or flow vortex shedding, is analyzed. The corresponding correlation analysis is also carried out, which indicates that the sound dipole source exists in a finite area of the attached wall. The front end of the area is at the separation point along the circumferential direction of the wall, and the end is at the location where the separation vortex completely falls off and a trailing vortex begins to form. In addition, the thickness of the area exists along the radial direction and gradually increases backward.
Details
- Language :
- English
- ISSN :
- 22277390
- Volume :
- 11
- Issue :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1d44dd8735f4872bbfa710c7e817e89
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/math11092070