Back to Search
Start Over
Real-Time Intrusion Detection in Power Grids Using Deep Learning: Ensuring DPU Data Security
- Source :
- HighTech and Innovation Journal, Vol 5, Iss 3, Pp 814-827 (2024)
- Publication Year :
- 2024
- Publisher :
- Ital Publication, 2024.
-
Abstract
- Deep learning technologies have revolutionized the management of energy, energy consumption, and data security within smart grids through non-intrusive load monitoring (NILM). This paper explores the use of deep learning for real-time intrusion detection in power grids with a primary focus on safeguarding the integrity and security of Data Processing Units (DPUs). An evaluation of various machine learning models, including Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), Decision Trees, and Random Forests, is conducted to detect various types of intrusions, including Fault, Injection, Masquerade, Normal, and Replay. Random Forest produced AUC values of 1.00 for all classes and an overall F1-score of 0.99 for all classes. The Decision Tree model also shows robust performance for detecting Fault and Injection intrusions (AUC = 0.98), with an overall F1-score of 0.94. However, the LDA and SVM models do not perform well in detecting Injection intrusions with overall F1-scores of 0.83 and 0.86. Advances in machine learning can be used to improve smart grid security, reliability, and efficiency, according to this study. These findings highlight the potential of advanced machine learning techniques to enhance smart grid reliability and efficiency. Doi: 10.28991/HIJ-2024-05-03-018 Full Text: PDF
Details
- Language :
- English
- ISSN :
- 27239535
- Volume :
- 5
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- HighTech and Innovation Journal
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1d4adca539c74fad95ddbf136f797208
- Document Type :
- article
- Full Text :
- https://doi.org/10.28991/HIJ-2024-05-03-018