Back to Search Start Over

Instance-Based Lossless Summarization of Knowledge Graph With Optimized Triples and Corrections (IBA-OTC)

Authors :
Hafiz Tayyeb Javed
Kifayat Ullah Khan
Muhammad Faisal Cheema
Asaad Algarni
Jeongmin Park
Source :
IEEE Access, Vol 12, Pp 5584-5604 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

Knowledge graph (KG) summarization facilitates efficient information retrieval for exploring complex structural data. For fast information retrieval, it requires processing on redundant data. However, it necessitates the completion of information in a summary graph. It also saves computational time during data retrieval, storage space, in-memory visualization, and preserving structure after summarization. State-of-the-art approaches summarize a given $KG$ by preserving its structure at the cost of information loss. Additionally, the approaches not preserving the underlying structure, compromise the summarization ratio by focusing only on the compression of specific regions. In this way, these approaches either miss preserving the original facts or the wrong prediction of inferred information. To solve these problems, we present a novel framework for generating a lossless summary by preserving the structure through super signatures and their corresponding corrections. The proposed approach summarizes only the naturally overlapped instances while maintaining its information and preserving the underlying Resource Description Framework $RDF$ graph. The resultant summary is composed of triples with positive, negative, and star corrections that are optimized by the smart calling of two novel functions namely $merge$ and $disperse$ . To evaluate the effectiveness of our proposed approach, we perform experiments on nine publicly available real-world knowledge graphs and obtain a better summarization ratio than state-of-the-art approaches by a margin of 10% to 30% with achieving its completeness, correctness, and compactness. In this way, the retrieval of common events and groups by queries is accelerated in the resultant graph.

Details

Language :
English
ISSN :
21693536
Volume :
12
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.1d6ed27f16b74f11a95ad5b3be1c901c
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2023.3340984