Back to Search Start Over

Investigations on SARS-CoV-2 Susceptibility of Domestic and Wild Animals Using Primary Cell Culture Models Derived from the Upper and Lower Respiratory Tract

Authors :
Iris Färber
Johannes Krüger
Cheila Rocha
Federico Armando
Maren von Köckritz-Blickwede
Stefan Pöhlmann
Armin Braun
Wolfgang Baumgärtner
Sandra Runft
Nadine Krüger
Source :
Viruses, Vol 14, Iss 4, p 828 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Several animal species are susceptible to SARS-CoV-2 infection, as documented by case reports and serological and in vivo infection studies. However, the susceptibility of many animal species remains unknown. Furthermore, the expression patterns of SARS-CoV-2 entry factors, such as the receptor angiotensin-converting enzyme 2 (ACE2), as well as transmembrane protease serine subtype 2 (TMPRSS2) and cathepsin L (CTSL), cellular proteases involved in SARS-CoV-2 spike protein activation, are largely unexplored in most species. Here, we generated primary cell cultures from the respiratory tract of domestic and wildlife animals to assess their susceptibility to SARS-CoV-2 infection. Additionally, the presence of ACE2, TMPRSS2 and CTSL within respiratory tract compartments was investigated in a range of animals, some with unknown susceptibility to SARS-CoV-2. Productive viral replication was observed in the nasal mucosa explants and precision-cut lung slices from dogs and hamsters, whereas culture models from ferrets and multiple ungulate species were non-permissive to infection. Overall, whereas TMPRSS2 and CTSL were equally expressed in the respiratory tract, the expression levels of ACE2 were more variable, suggesting that a restricted availability of ACE2 may contribute to reduced susceptibility. Summarized, the experimental infection of primary respiratory tract cell cultures, as well as an analysis of entry-factor distribution, enable screening for SARS-CoV-2 animal reservoirs.

Details

Language :
English
ISSN :
19994915
Volume :
14
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Viruses
Publication Type :
Academic Journal
Accession number :
edsdoj.1da3b75e027d440a83541598d6f517e2
Document Type :
article
Full Text :
https://doi.org/10.3390/v14040828