Back to Search
Start Over
EEG-Based Target Detection Using an RSVP Paradigm under Five Levels of Weak Hidden Conditions
- Source :
- Brain Sciences, Vol 13, Iss 11, p 1583 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Although target detection based on electroencephalogram (EEG) signals has been extensively investigated recently, EEG-based target detection under weak hidden conditions remains a problem. In this paper, we proposed a rapid serial visual presentation (RSVP) paradigm for target detection corresponding to five levels of weak hidden conditions quantitively based on the RGB color space. Eighteen subjects participated in the experiment, and the neural signatures, including P300 amplitude and latency, were investigated. Detection performance was evaluated under five levels of weak hidden conditions using the linear discrimination analysis and support vector machine classifiers on different channel sets. The experimental results showed that, compared with the benchmark condition, (1) the P300 amplitude significantly decreased (8.92 ± 1.24 μV versus 7.84 ± 1.40 μV, p = 0.021) and latency was significantly prolonged (582.39 ± 25.02 ms versus 643.83 ± 26.16 ms, p = 0.028) only under the weakest hidden condition, and (2) the detection accuracy decreased by less than 2% (75.04 ± 3.24% versus 73.35 ± 3.15%, p = 0.029) with a more than 90% reduction in channel number (62 channels versus 6 channels), determined using the proposed channel selection method under the weakest hidden condition. Our study can provide new insights into target detection under weak hidden conditions based on EEG signals with a rapid serial visual presentation paradigm. In addition, it may expand the application of brain–computer interfaces in EEG-based target detection areas.
Details
- Language :
- English
- ISSN :
- 20763425
- Volume :
- 13
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Brain Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1e0feff5f1174534805b66f8849bfe1d
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/brainsci13111583