Back to Search Start Over

DeepZipper. II. Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning

Authors :
R. Morgan
B. Nord
K. Bechtol
A. Möller
W. G. Hartley
S. Birrer
S. J. González
M. Martinez
R. A. Gruendl
E. J. Buckley-Geer
A. J. Shajib
A. Carnero Rosell
C. Lidman
T. Collett
T. M. C. Abbott
M. Aguena
F. Andrade-Oliveira
J. Annis
D. Bacon
S. Bocquet
D. Brooks
D. L. Burke
M. Carrasco Kind
J. Carretero
F. J. Castander
C. Conselice
L. N. da Costa
M. Costanzi
J. De Vicente
S. Desai
P. Doel
S. Everett
I. Ferrero
B. Flaugher
D. Friedel
J. Frieman
J. García-Bellido
E. Gaztanaga
D. Gruen
G. Gutierrez
S. R. Hinton
D. L. Hollowood
K. Honscheid
K. Kuehn
N. Kuropatkin
O. Lahav
M. Lima
F. Menanteau
R. Miquel
A. Palmese
F. Paz-Chinchón
M. E. S. Pereira
A. Pieres
A. A. Plazas Malagón
J. Prat
M. Rodriguez-Monroy
A. K. Romer
A. Roodman
E. Sanchez
V. Scarpine
I. Sevilla-Noarbe
M. Smith
E. Suchyta
M. E. C. Swanson
G. Tarle
D. Thomas
T. N. Varga
Source :
The Astrophysical Journal, Vol 943, Iss 1, p 19 (2023)
Publication Year :
2023
Publisher :
IOP Publishing, 2023.

Abstract

Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain 5–10 LSNe in total while next-generation experiments are expected to contain several hundred to a few thousand of these systems. We search for these systems in observed Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in the griz bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of 61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a magnitude-limited ( m _i < 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.

Details

Language :
English
ISSN :
15384357
Volume :
943
Issue :
1
Database :
Directory of Open Access Journals
Journal :
The Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.1e3b03e0187041ab9eb03e3e81559afa
Document Type :
article
Full Text :
https://doi.org/10.3847/1538-4357/ac721b