Back to Search
Start Over
Optimizing cognitive load and learning adaptability with adaptive microlearning for in-service personnel
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Adaptive microlearning has emerged as a crucial approach for enhancing the working skills of in-service personnel. This study introduces the design and development of an innovative adaptive microlearning (AML) system and investigates its effectiveness compared to a conventional microlearning (CML) system. The main distinguishing feature of an AML system from a CML system is its adaptive features that tailor the learning experience to individual needs, including personalized content delivery, real-time feedback, and adaptive learning paths. A quasi-experimental study involving 111 in-service personnel (NAML = 56, NCML = 55) was conducted. ANCOVA results confirmed that the AML system significantly reduced unnecessary cognitive load due to inappropriate instructional design (mean difference of -20.02, p
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1eef465843194d6480bd67f6fa81d31d
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-77122-1