Back to Search
Start Over
Intermediate-regulated dynamic restructuring at Ag-Cu biphasic interface enables selective CO2 electroreduction to C2+ fuels
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract A bimetallic heterostructure has been shown effective to enhance the multi-carbon (C2+) product selectivity in CO2 electroreduction. Clarifying the interfacial structure under electrolysis and its decisive role in the pathway selection are crucial, yet challenging. Here, we conceive a well-defined Ag-Cu biphasic heterostructure to understand the interfacial structure-steered product selectivity: The Cu-rich interface prefers ethylene, while the dominant product switch to alcohols with an increasing Ag fraction, and finally to CO as Ag occupying the main surface. We unravel a *CO intermediate-regulated interfacial restructuring, and observe abundant of Cu atoms migrating onto the neighboring Ag surface under a locally high *CO concentration. The evolving structure alters the oxyphilic characteristic at the interface, which profoundly determines the hydrogenation energetics of CO2 and ultimately, the dominant C2+ product. This work explicitly links the evolving interfacial structure with distinct C2+ pathway, formulating design guidelines for bimetallic electrocatalysts with selectively enhanced C2+ yields.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1f6fee5fbd9421899d81e037e286dc8
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-54630-2