Back to Search
Start Over
Comprehensive glycoproteomics shines new light on the complexity and extent of glycosylation in archaea.
- Source :
- PLoS Biology, Vol 19, Iss 6, p e3001277 (2021)
- Publication Year :
- 2021
- Publisher :
- Public Library of Science (PLoS), 2021.
-
Abstract
- Glycosylation is one of the most complex posttranslational protein modifications. Its importance has been established not only for eukaryotes but also for a variety of prokaryotic cellular processes, such as biofilm formation, motility, and mating. However, comprehensive glycoproteomic analyses are largely missing in prokaryotes. Here, we extend the phenotypic characterization of N-glycosylation pathway mutants in Haloferax volcanii and provide a detailed glycoproteome for this model archaeon through the mass spectrometric analysis of intact glycopeptides. Using in-depth glycoproteomic datasets generated for the wild-type (WT) and mutant strains as well as a reanalysis of datasets within the Archaeal Proteome Project (ArcPP), we identify the largest archaeal glycoproteome described so far. We further show that different N-glycosylation pathways can modify the same glycosites under the same culture conditions. The extent and complexity of the Hfx. volcanii N-glycoproteome revealed here provide new insights into the roles of N-glycosylation in archaeal cell biology.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 15449173 and 15457885
- Volume :
- 19
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.1faa55e7793c4b4c90fe253b86a16f40
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pbio.3001277