Back to Search Start Over

Pivoting between calmodulin lobes triggered by calcium in the Kv7.2/calmodulin complex.

Authors :
Alessandro Alaimo
Araitz Alberdi
Carolina Gomis-Perez
Juncal Fernández-Orth
Ganeko Bernardo-Seisdedos
Covadonga Malo
Oscar Millet
Pilar Areso
Alvaro Villarroel
Source :
PLoS ONE, Vol 9, Iss 1, p e86711 (2014)
Publication Year :
2014
Publisher :
Public Library of Science (PLoS), 2014.

Abstract

Kv7.2 (KCNQ2) is the principal molecular component of the slow voltage gated M-channel, which strongly influences neuronal excitability. Calmodulin (CaM) binds to two intracellular C-terminal segments of Kv7.2 channels, helices A and B, and it is required for exit from the endoplasmic reticulum. However, the molecular mechanisms by which CaM controls channel trafficking are currently unknown. Here we used two complementary approaches to explore the molecular events underlying the association between CaM and Kv7.2 and their regulation by Ca(2+). First, we performed a fluorometric assay using dansylated calmodulin (D-CaM) to characterize the interaction of its individual lobes to the Kv7.2 CaM binding site (Q2AB). Second, we explored the association of Q2AB with CaM by NMR spectroscopy, using (15)N-labeled CaM as a reporter. The combined data highlight the interdependency of the N- and C-lobes of CaM in the interaction with Q2AB, suggesting that when CaM binds Ca(2+) the binding interface pivots between the N-lobe whose interactions are dominated by helix B and the C-lobe where the predominant interaction is with helix A. In addition, Ca(2+) makes CaM binding to Q2AB more difficult and, reciprocally, the channel weakens the association of CaM with Ca(2+).

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.1fc06521041f5b0972c7720bcbb4a
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0086711