Back to Search Start Over

Estimation of the rice aboveground biomass based on the first derivative spectrum and Boruta algorithm

Authors :
Ying Nian
Xiangxiang Su
Hu Yue
Yongji Zhu
Jun Li
Weiqiang Wang
Yali Sheng
Qiang Ma
Jikai Liu
Xinwei Li
Source :
Frontiers in Plant Science, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

Aboveground biomass (AGB) is regarded as a critical variable in monitoring crop growth and yield. The use of hyperspectral remote sensing has emerged as a viable method for the rapid and precise monitoring of AGB. Due to the extensive dimensionality and volume of hyperspectral data, it is crucial to effectively reduce data dimensionality and select sensitive spectral features to enhance the accuracy of rice AGB estimation models. At present, derivative transform and feature selection algorithms have become important means to solve this problem. However, few studies have systematically evaluated the impact of derivative spectrum combined with feature selection algorithm on rice AGB estimation. To this end, at the Xiaogang Village (Chuzhou City, China) Experimental Base in 2020, this study used an ASD FieldSpec handheld 2 ground spectrometer (Analytical Spectroscopy Devices, Boulder, Colorado, USA) to obtain canopy spectral data at the critical growth stage (tillering, jointing, booting, heading, and maturity stages) of rice, and evaluated the performance of the recursive feature elimination (RFE) and Boruta feature selection algorithm through partial least squares regression (PLSR), principal component regression (PCR), support vector machine (SVM) and ridge regression (RR). Moreover, we analyzed the importance of the optimal derivative spectrum. The findings indicate that (1) as the growth stage progresses, the correlation between rice canopy spectrum and AGB shows a trend from high to low, among which the first derivative spectrum (FD) has the strongest correlation with AGB. (2) The number of feature bands selected by the Boruta algorithm is 19~35, which has a good dimensionality reduction effect. (3) The combination of FD-Boruta-PCR (FB-PCR) demonstrated the best performance in estimating rice AGB, with an increase in R² of approximately 10% ~ 20% and a decrease in RMSE of approximately 0.08% ~ 14%. (4) The best estimation stage is the booting stage, with R2 values between 0.60 and 0.74 and RMSE values between 1288.23 and 1554.82 kg/hm2. This study confirms the accuracy of hyperspectral remote sensing in estimating vegetation biomass and further explores the theoretical foundation and future direction for monitoring rice growth dynamics.

Details

Language :
English
ISSN :
1664462X
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.1ff187af349f4a0885597daba8b4b717
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2024.1396183